Skip to main content

3. 二叉树的迭代遍历

题目

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

img

输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:

img

输入:root = [1,2]
输出:[1,2]

示例 5:

img

输入:root = [1,null,2]
输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

来源:力扣(LeetCode)

思路

迭代法

  • 为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?

  • 递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。

解题

前序遍历

/**
* @param {TreeNode} root
* @return {number[]}
*/
const preorderTraversal = function (root) {
// 定义结果数组
const res = []
// 处理边界条件
if (!root) {
return res
}
// 初始化栈结构
const stack = []
// 首先将根结点入栈
stack.push(root)
// 若栈不为空,则重复出栈、入栈操作
while (stack.length) {
// 将栈顶结点记为当前结点
const cur = stack.pop()
// 当前结点就是当前子树的根结点,把这个结点放在结果数组的尾部
res.push(cur.val)
// 若当前子树根结点有右孩子,则将右孩子入栈
if (cur.right) {
stack.push(cur.right)
}
// 若当前子树根结点有左孩子,则将左孩子入栈
if (cur.left) {
stack.push(cur.left)
}
}
// 返回结果数组
return res
}

后序遍历

/**
* @param {TreeNode} root
* @return {number[]}
*/
const postorderTraversal = function (root) {
// 定义结果数组
const res = []
// 处理边界条件
if (!root) {
return res
}
// 初始化栈结构
const stack = []
// 首先将根结点入栈
stack.push(root)
// 若栈不为空,则重复出栈、入栈操作
while (stack.length) {
// 将栈顶结点记为当前结点
const cur = stack.pop()
// 当前结点就是当前子树的根结点,把这个结点放在结果数组的头部
res.unshift(cur.val)
// 若当前子树根结点有左孩子,则将左孩子入栈
if (cur.left) {
stack.push(cur.left)
}
// 若当前子树根结点有右孩子,则将右孩子入栈
if (cur.right) {
stack.push(cur.right)
}
}
// 返回结果数组
return res
}

中序遍历

const inorderTraversal = function (root) {
// 定义结果数组
const res = []
// 初始化栈结构
const stack = []
// 用一个 cur 结点充当游标
let cur = root
// 当 cur 不为空、或者 stack 不为空时,重复以下逻辑
while (cur || stack.length) {
// 这个 while 的作用是把寻找最左叶子结点的过程中,途径的所有结点都记录下来
while (cur) {
// 将途径的结点入栈
stack.push(cur)
// 继续搜索当前结点的左孩子
cur = cur.left
}
// 取出栈顶元素
cur = stack.pop()
// 将栈顶元素入栈
res.push(cur.val)
// 尝试读取 cur 结点的右孩子
cur = cur.right
}
// 返回结果数组
return res
}