Skip to main content

回溯算法理论基础

什么是回溯法

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯函数也就是递归函数,指的都是一个函数

回溯法的效率

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

回溯法解决的问题回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N 个数里面按一定规则找出 k 个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个 N 个数的集合里有多少符合条件的子集
  • 排列问题:N 个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N 皇后,解数独等等

如何理解回溯法

回溯法解决的问题都可以抽象为树形结构

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N 叉树)。

回溯法模板

回溯三部曲。

  • 回溯函数模板返回值以及参数

    • 回溯算法中函数返回值一般为 void。

    • 一般是先写逻辑,然后需要什么参数,就填什么参数。

function backtracking(参数) {}
  • 回溯函数终止条件

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

if (终止条件) {
存放结果
return
}
  • 回溯搜索的遍历过程

回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}

for 循环可以理解是横向遍历,backtracking(递归)就是纵向遍历

完整版本

function backtracking(参数) {
if (终止条件) {
存放结果;
return;
}

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}